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In this paper, we consider a class of switching systems perturbed by cubic homogeneous polyno-
mials. This class of systems is separated by a straight line: y = 0, and has three equilibria: (0, 0)
and (£1,0) which are in the separation line. A new version of the Gasull-Torregrosa method
based on Poincaré return maps is presented, and used to compute the Lyapunov constants. Based
on this method, a complete classification on the center conditions is obtained for the studied
class of systems. Furthermore, by perturbing the cubic switching integral system with cubic
homogeneous polynomials, we show that at least ten small-amplitude limit cycles are obtained
around one of the centres. This is a new lower bound for the number of limit cycles bifurcating
from a center in such switching systems with cubic homogeneous nonlinearities.
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1. Introduction

Determining the number and configuration of limit
cycles in differential dynamical systems is related
to the second part of Hilbert’s 16th problem. An
enormous amount of work has been done on this
problem for continuous differential dynamical sys-
tems, see, e.g. [LI'vashenko & Yakovenkd |19_91|,|§yﬂi|

11980 Mlegg%, 1991. [1990: [Yu & Han, 2012; Li &
Liu,—m; i ,12009]. In mechanics, electrical

engineering and automatic control many problems
are described by differential dynamical systems
which are not continuous (nonsmooth). In the past
few decades, there has been increasingly high interest
in the qualitative analysis of discontinuous dynam-
ical systems |Andronov et all, [1959; Banerjee &
Verghese, |201)l|] In such systems, there exist not
only the classical bifurcations, but also bifurcations
of other types like the border-collision bifurcation
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ﬂZmlMLL 12006; |Simpson & Meiss, DDD_ZH Switch-
ing systems studied in this paper are special kind of
discontinuous differential dynamical systems, which
are widely used for mathematical modeling in con-
trol and engineering.

Many researchers have investigated the switch-
ing systems. On one hand, some authors focused
on the methods of bifurcation analysis in switching
systems. m established basic qualita-
tive theory for switching systems. Coll and Gasull

Coll et all, [ZDDJH derived formulas for computing

the first three Lyapunov quantities associated with
three types of singularities. | showed
the existence of a homoclinic solution in a per-
turbed nonsmooth system. Li and Huang |
considered the concurrent homoclinic bifurcation
and Hopf bifurcation for a class of planar perturbed
nonsmooth Filippov systems. Gasull and Torregrosa

| developed a method for constructing five
limit cycles in a quadratic switching system, while
only four limit cycles have been constructed for pla-
nar quadratic continuous differential systems @,
11980; [Sun & Shu, [1979].

On the other hand, more authors investigated
the center and limit cycle problems in switching sys-
tems [Lunkevich, [1968: [Filippoy, [1988: Pleshkan &
Sibirskii, I@] Center conditions have been estab-
lished for the switching Kukles system [Gasull &
Torregrosa, [2003] and the switching Liénard system
Coll et _all, [1999]. Han and Zhang [2010] proved
that two limit cycles can bifurcate from a focus
for piecewise linear systems. Chen and Du M]
constructed a switching Bautin system and proved
that nine limit cycles can bifurcate from a cen-
ter of the system. Tian and Yu M] provided a
complete classification on the conditions of a sin-
gular point being a center in the switching Bautin
system, and constructed an example to show the
existence of ten limit cycles bifurcating from the
center. Recently, a planar quadratic switching sys-
tem (the switching line that is not straight) has
been constructed to obtain 16 limit cycles [Cruz
et al., |2Q19] by using the averaging approach up to
2 order.

<—5(x — 23) + boy —

<—5(x — 23) + boy —

However, very few works focus on the center
and limit cycle problems in cubic switching systems,
let alone the switching systems with homogeneous
nonlinearities. (Guo_et_all [2019] studied a class of
Zo-equivariant cubic switching systems, and showed
the existence of 18 limit cycles. Very recently, Gou-
veia and Torregrosa m, found 24 limit cycles in
a cubic switching polynomial system with degen-
erated Hopf and pseudo Hopf bifurcations, by per-
turbing a single Darboux center. [Yu et all [2021]
constructed a cubic planar switching polynomial
system with Zs-symmetry, and proved that such a
system could exhibit at least nine small-amplitude
limit cycles around each of two symmetric foci, giv-
ing a total of 18 limit cycles.

If nonsmooth systems have different definitions
for the continuous vector fields in two or more differ-
ent regions divided by lines or curves, we call such
systems switching systems. In this paper, we study
switching planar systems, described by

0z —y + f*(z,y),

. r+0y+g(z,y), y>0,
3 == 1
0) (bx —y+ f(x,y), @
r+oy+g (z,y), y<O,

where f*(x,7) and g*(z,%) are analytic functions
in x and y, starting from at least second-order
terms. Actually, the origin of system () is an equi-
librium. System (Il includes two subsystems: one
is called upper system, defined for y > 0, and the
other is called lower system, defined for y < 0.

To study the bifurcation of limit cycles associ-
ated with a singular point in a switching system, we
need Lyapunov constants to determine the number
and stability of bifurcating limit cycles. We will
present a new version of Gasull-Torregrosa method
|Gasull & Torregrosa, 12003] based on Poincaré
return map |Andronov, 1973; [Liu_ et all, 2008] to
compute the Lyapunov constants near the origin of
the general system (). Then we apply this method
to study the center conditions and bifurcation of
limit cycles in the following cubic switching system
which has cubic homogeneous nonlinearities.

(bo + 2)2%y + 2azzy® + 2a3y°
, ify>0
—x + 20y + 2 + 2a52y® + 2a6y>

(b() + 2)x2y + 2b2xy2 + 2b3y3 )
, ify<0
—x + 20y + 2 + 2b52y% + 2bgy>
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where J, a;’s and b;’s are real parameters, satisfying |§| < 1. Since our purpose is to find limit cycles as
many as possible which bifurcate in system (), we assume by > 0 under which the origin is an elementary
center. Obviously, the two points (1,0) and (—1,0) of system (2)) are Hopf-type singular points. Note that
the upper system of () is invariant under the change (z,y) — (—z, —y), and the lower system is also the
same, which implies that the separate upper or lower system has Zs-equivariant symmetry. However, we can
obviously find that the whole system () is not Zs-equivariant. Thus, when subsystems are equivariant, the
whole system is not necessarily equivariant. Under the change (z,y) — (—x, —y), the system (@) becomes

the following form,

Comparing [2)) and (@), we know that the qual-
itative properties around (—1,0) in system (2)) is
the same as that around (1,0) in system (3]). Actu-
ally, we can also obtain the system (B) by the
substitution

(az,as,as,ap, ba, b3, bs, be)
— (b2, b3, b5, b6, a2, a3, as, ag)

to system (2). Then we say that the qualitative
properties around (1,0) in system (B]) are the same
as that around (1,0) in system (2)). Now, we con-
clude that the qualitative properties around (—1,0)
are the same as that around (1,0) in system (2)). In
other words, in system (), if we find £ limit cycles
around (1,0), then we can also find k limit cycles
around (—1,0); if (1,0) is a center, then (—1,0)
can also be a center. However, note that the same
dynamic behavior around the two points (1,0) and
(—1,0) cannot exist at the same time. Based on the
above description, we call such systems [like (2)]
quasi-equivariant.

The main goal of this paper is to present a new
version of the Gasull-Torregrosa method [Gasull &
Torregrosa, 2003] for computing Lyapunov con-
stants of switching systems. Based on the method,
we derive center conditions and analyze the bifur-
cation of limit cycles in a quasi-equivariant cubic
switching system with homogeneous nonlinearities.
We first compute the first eight Lyapunov constants
for the singular point (1,0) of system (2)) to obtain
the center conditions and prove the existence of
seven limit cycles bifurcating from (1,0) or (—1,0),
and one limit cycle bifurcating from (0,0). Then,
we choose one of the center conditions with proper
perturbations to construct a perturbed system, and
compute the Lyapunov constants associated with

x <
<y> —8(z — 23) + boy — (bo + 2)2%y + 2a22y® + 2a3y> . 0
, ify<o.
—x + 20y + 2 + 2a52y% + 2a6y> Y

—8(z — 2%) + boy — (bo + 2)a%y + 2boxy® + 2b31° -
, 1 >0,
—x + 20y + 2% + 2b52y% + 2bgy> Y

the singular point of the perturbed system to prove
the existence of ten limit cycles around (1,0), yield-
ing that ten limit cycles can also bifurcate from
(_ 17 O) .

2. Computation of Lyapunov
Constants

In this section, we present a new version of Gasull-
Torregrosa method for solving center and limit
cycle problems of switching systems. First, we intro-
duce the Gasull-Torregrosa method which is used
to compute the Lyapunov constant of switching
system in many references |[Tian & Yu. 2015; Li
et al.,2015; Guo et al., 2018; [Yu et all, M] The
details of Gasull-Torregrosa’s theory can be found

in [Gasull & Torregrosa, 2003].

2.1.

Consider the general switching differential system,

Gasull-Torregrosa method

dr—y+> Xf(x,y)
sz , ify >0,
:c+5y+ZY;:(x,y)
(Jb)_ k=2
Y S
5x—y+ZXk(x,y)
- ify <0,
x—i—éy—i—ZY;(x,y)
k=2
(4)
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where X,f(x,y) and Y,f(x,y) are homogeneous
polynomials in # and y. Under the polar coordi-
nates transformation, x = rcosf and y = rsin6,
(@) can be rewritten as

o+ Y TO)"
nk:2 , for @€ (0,m),
L+ ef @)
dr k=2
o n
or + Z T, (0)r*
k=2 , for 0 € (—m,0),

1+ Zn: O, (0)rk!
k=2
(5)

where Ti(0) and ©F(6) are polynomials in sin 6
and cos 0 of degrees k + 1. By the method of small
parameters of Poincaré, the solutions of the upper
and lower systems of () are given by

= up(O)h*, r(h,0) = v(0)h",

k>1 k>1
(6)

where u1(0) = v1(0) = 1, ug(0) = vx(0) = 0,
Vk > 2. Substituting the above solutions into (&),
we can solve ug(6) or vg(6) one by one by integral
operations. Consequently, we can define the follow-
ing successive functions,

NT(h) =rT(h,7) — h,
A" (h)=h—1r"(h,—7),

for the upper and lower systems of (), respectively.
Then, the successive function for the switching sys-
tem () can be defined as

A(h) = AT (h) + A (h)
=rt(h,7) —r~(h,—7). (7)

It has been shown in 11 Torregrosal,
M] that the displacement function A(h) can be
expanded as

n

A(h) = (up(m) — vr(—

k=1

Z Vi hk+1
(8)

where V}, is called the kth-order Lyapunov constant
of the switching system (H]).

2.2. A new version of
Gasull-Torregrosa method

Both the above classical method and the method in
,12015; ILi et all, 2015; Guo et al., 2018;
,M | use integral operations to solve ug(0)
or v(0) one by one. Here, we replace the integral
operations with algebraic computation, and give a
new version.
Consider the equation

A3 =+ A47“
1+ Byr + B4’I“27

F(w,v,r) = (9)

where A; and By, are homogeneous kth polynomi-
als in w and v, k = 3,4. We expand F' into Taylor
series at r = 0 of the form

ZF w,v) (10)

’lU’U’I"

Then we have the following result.

Lemma 1. The n-order partial derivative of (4)
with respect to r has the following form

n+1
ABB + Qn il
OF(w,v,1) ( 2 )
or™ B (14 Bsr + B47“ Zyntl

;o (11)

where @y ; is the polynomial in w and v, C, is a
constant, n = 1,2,.... Assume that Qo does not
contain the monomial like A3BY. Then Eq. (1)
satisfies the following conditions: deg(Qn;) <
deg(A3Byt"), i =0,1,2,...,n+ 1.

Proof. We prove this theorem by induction. For

n = 1, we can obtain that

8F(w, v, ’I“) B A3B3 + 144B4’I“2 + 2A3Byr — Ay
or N (1 4+ Bsr + Byr?)?

(12)

Obviously, the first partial derivative of (@) satis-
fies our lemma. Now, we assume that the (n — 1)th
partial derivative of (@) satisfies the lemma, that is,

=0

o ) Ch-1 (A3B§1 + Z in,ﬂ“i>
w,v,T)

orn—1 (1 4+ Bsr + Byr?)n
(13)
satisfying deg(Qn—1,) < deg(Ag,Bg””’*l), 1= 0,1,
2,...,n. Here, ;,—1 0 does not contain the mono-

mial like A3B5 !
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Then, solving the first partial derivative of ([I3]) results in

O"F(w,v,r)
or"

_ 0 O F (w,v,7)
~ Or orn—1

i=1
= Cnfl

(Z z‘in,Z-r“> (14 Bsr + Byr?) — n(

=0

n
AsBE 4> in,z‘TZ) (Bs +2Byr)

n
<Z iQn_Lﬁ“i_1> (1 + Bg?“ =+ B47“2) — n(
=1

(1 + Bsyr + B4T2)n+1

n
Bs + 2B47“) Z Qn_uri — n(A;:,B? + 2A3Bg_1B47“)

=0

= Un—-1

i=1

(14 Bsr + Byr2)ntl

n n
—ndsBy + (Z iin,iri1> (1+ Bsr + Byr®) —n(Bs + 2B4r) > Qu_1,r" — 2nA3BY ' Byr

=0

= Cn—l

Through simple calculation and arrangement, we
find that

n+1
C| AsBY + > Qur’
8”F(w, U7T) _ =0 (15)
orn (14 Bar + Byr?)nt1

where

Cp = —nCy_1,

1
Qno = _E(Qn—l,l —nBsQn-1,0),

1
Qn1 = _E[2Qn71,2 + (1 —=n)B3Qn-1,1

—2nA3BY ' By — 2B4nQy—1,),

1 . .

Qn,i = —E[(l +1)Qn—1it1 + (i —n)B3Qn_1,
+ (1 —2n — 1)B4Qn—1,i—1],
fori=2,3,...,n—1,

n+1
Qn,n = B4Qn—l,n—17

Qn,n+1 = B4Qn71,n-

(16)

According to our hypothesis, we get the conclusion:
deg(Qn ) < deg(A3By™),i=0,1,2,...,n+1. W

(1 + Bg’l“ =+ B4T2)n+1

(14)

Now, we assume that the general switching sys-
tem has the following form,

<6x—y+f1<x,y)> N
(56)_ vroy+aey) T -

ox —y+ folz,y) .
, ify <O.
z+ 0y + g2, y)

By the polar coordinates transformation, z =
rcosf and y = rsinf, we can rewrite (I7) as

T25+rf1 COS9+T9? sin9’ for 6 € (0, ),
0 r+ g1 cosf — fisinf
@: 2 .

T5+rf20089+rg?sme’ f0r9€(_7"70)7
r 4 gocosh — fasinf

(18)

where f1, f2, g1 and go are polynomials in sin#,
cos 0 and r. Next, we present how to solve u;(#) for
upper system of (7). In the same way, we can get
v;(0) for lower system of (I7]).

For the upper system of (I7), substituting
cos @ = w, sin @ = v into the first half of (I8) results
in

o dr _ r28 + rwf) + mgl7 (19)
db r4+wg —vfi

where f; and g; become functions of w, v and r.

2250073-5
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In order to explain our method conveniently,
we need to give the specific forms of f; and ¢; in
the following. Because we only consider the cubic
switching system in our paper, without loss of gen-
erality, we have

f1 = fior? + fisr®,

where f15 and g2 are quadratic homogeneous poly-
nomials in w and v, and fi3 and gi3 are cubic
homogeneous polynomials in w and v. Thus we can
rewrite (I9) as

g1 = gror’ + g137°>, (20)

76 + r?[(wfia + vgi2) + r(wfiz + vgi3))]
L+ (wg12 — vfiz2)r + (wgiz — v fiz)r?
(21)

I, =

In general, ¢ is a linear perturbation parameter and
we can first let § = 0 to make the first LyapunovI

.
[Ci17~~~7ik7]'1,---,jk(A3B%1

T Qi 200Ul (0)u2(6) - -l (0)]

constant equal to 0. Thus, by Lemmal[ll when § = 0,
F, can be expanded in Taylor series at » = 0 to

- 1 - . . -
F, =12 A3+chn(Ang+Qn,o)rn . (22)
n=1

where A3 = wfi2 + vg12, B3 = wgi2 — vfi2, and
Qn,O is the polynomial in w and v.

As described in classical theory, by the method
of small parameters of Poincaré, the solution of the
upper system of (I7)) is given by

r(h,8) =) up(6)h, (23)

p=>1

where u1(0) = 1, and u,(0) = 0 for Vp > 2.

Substituting the above solution and w = cos#,
v = sinf into (I9) and (22) yields that u;(0) = 1
and dudLe(e) = Fym, where F, ,, has the form

Fu,m = Z

1171+ Figje=m

where i, € Ny, jr € N, 1 § 11 < 1y < e <
g < m, j1+ -+ Jg =2 2, Qoo = 0. Here, As,
B3,Qj,+...4j,—2,0 become functions of cosf and

sin@, and C;, ;i i 1s constant. Then, we have
) 2155k ] 150050 )

the lemma.

k

Lemma 2. For the general cubic switching system,
the mazimal order of trigonometric functions cos 6
and sinf in the expression of um,(0) is equal to
3(m —1).

Proof. Firstly, we denote that order(f) is the
maximal order of cosf and siné in function f. If
m = 1, we have u1(0) = 1. If m = 2, by ([24)), we
have

dusg (6 ~ ~
;9( ) _ Agu?(0) = As.

Obviously, the lemma holds on for u;(#) and uz(0).
By induction, we can assume that the lemma holds
on for ug(f),...,um—1(0). Next, we compute the
order of u,,(0). By Lemmalll we can see in (24)):

order(ﬁgééﬁ”'ﬂwz)

k
=34301+ - +i—2)=3> jp—3,
p=1

(J1 4+ gk —2)!

OI‘deI‘(le+...+jk,2,0)

k
< order(Ag BT =3% ", - 3,

p=1
order(ufl1 (H)ufj @)--- ui,’j (0))
k k k
= 30, — )jp =3 ipip—3> Jp
p=1 p=1 p=1

k
=3m =3 Jjp.
p=1
Thus,

order (dume(ﬁ)

d

k k
> =3 jp—3+3m—3) j,
p=1 p=1
=3(m—1).

Because order means the maximal order of trigono-
metric functions cos 6 and sin 0, we can get the con-
clusion that order(u,,(8)) =3(m—1). N

Through the above analysis, we have the
following theorem.

2250073-6
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Gg,0 1s constant term,

Gga(0) = Z 0% Z [S1.q.q1,42 €08(q10) + S2,q.91,60 SIN(q10)] + S3,0,9.60 ¢ + 54,07q7dq,2+19dq’2+1’

dq¢2 dq,l
q2=1 qg1=1
dg,1
Ga2(0) = D [Th,q,45 5in(q30) + To g4, cos(gs0)],
g3=1

where SL%QMIzv 527q7Q1,(I27 53707Q7(I2’ 54107‘17dq,2+17
T 4,45 and T> 4 4, are all constants, d, 1 is the order

of cos(8) and sin(f) in F, 4, dgo is the degree of 6
n Fyg.

Note that in the above theorem, for cubic

switching system, we know that d,; = 3(¢ — 1)
|

(25)

|

for uq(6) by Lemma 2l In order to get uy(f), we
just need to substitute ([23) to [24) and compare
the coefficients of cos(if), sin(if), i = 1,...,dg1
and 6 on both sides to determine the values of

Gq,Oa S17Q7q17q2’ 527q,q1,q27 SS,O,q,qzv 54107‘17dq,2+1’ Tl,q,q:a
and T3 g g,

Algorithm 1 Algorithm for solving wu,.

Input: fl(xay)v gl(x7y)
Output:  uy(6)

1: dg1 = deg(F,.q, [cos(8),sin(0)]),
dg2 = deg(Fyq,0),

Gq0 = solve(G4(0) = 0,Gyq0),

F 4 = combine(F, 4,trig),

dG (0 -
Hq(e) = % - Fu,qa

H,(0) = combine(H,(0),trig),

Solve all undetermined coefficients in (28]) from the equation H,(0) = 0.

From (§]), we know that the origin is a center of
system () if and only if A(h) = 0for 0 < h < 1. The
isolated zeros of A(h) = 0 near h = 0 correspond
to the number of limit cycles around the origin. By
simple computation, we get uy() = v1(8) = €%,
yielding Vy = e%(e%”S —1). Then we have Vj = 0
if and only if 6 = 0. As we all know, k£ must be odd
for Vj, of smooth systems [Han & Yu, 2012]. In gen-
eral, V;, # 0 with k being any positive integer for the
switching system (). Next, we turn to discuss how to
determine the maximal number of limit cycles which
may bifurcate from a Hopf critical point. Generally,
the following theorem gives sufficient conditions for
the existence of small-amplitude limit cycles in the
switching system (H]). (The proof can be found in

,2015]).)
Theorem 2 [Tian & Yu, 2!!15]. Suppose that there

exists a sequence of Lyapunov constants of sys-
tem), V;-O,Vil,..., ik,’withl =10 <t <o <1,

|
such that V; = O(|Viy,...,Vi|) for any i, <
J < ii41. Further, if at the critical point C, V;, =
‘/i == ik—lzoa ‘/Zk#oa and
8(W07 %1’ cee ‘/%kfl)
d(cr, e,y ck)

det # 0, (26)
C

then system ([f]) has exactly k limit cycles in a §-ball
with its center at the origin.

Compared with the smooth system, the center
problem in switching systems is more complicated.
In order to prove the center conditions for sys-
tem (@), we have the following lemmas.

Lemma 3 |[Chen & Zhang, 2012]. If the upper

and lower systems of (4]) have the first integrals
H*(z,y) and H™ (z,y) near the origin, respectively,
and either H" (x,y) or H™ (z,y) is an even function
inx or H" (x,0) = H ™ (z,0), then the origin of sys-
tem () is a center.

2250073-7
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Lemma 4 [Li et all, 2015]. Assume that § = 0.

If system () is symmetric with respect to the x-
axis, i.e. the functions on the right-hand side of sys-

tem ([{]) satisfy
X;:(.’B,y) = _X];(xa _y)a
Y;:(Sﬂ,y) = Y];(SC, _y)a

or if system ([f]) is symmetric with respect to the
y-axis, i.e. the functions on the right-hand side of

system ([f]) satisfy

Yi(z,y) ==Y, (—2,y),

then the origin of system () is a center.

b)Y

Clearly, the singular point (1,0) of system (2) cor-
responds to the origin of ([27)), which is a Hopf-
type critical point. In the following, we will use our
method in the previous section to compute the Lya-
punov constants for the origin of system (27), and
use them to derive the center conditions and to con-
sider limit cycle bifurcation.

3.1. Center conditions for
system (27)

With the aid of the program in Maple, we have com-
puted the Lyapunov constants associated with the
singular points (1,0) of system (2)), as given in the
following theorem.

3 1
oy —y1 + 55@'% — (bo + 2)z1y1 + azys + 55@'?
1 2 2 3
—| 3o+ 1) 21y + aza1yy + asy) ;

1
—2% + azr1y] + agy;

3
T1+ 6y1 + St + asyi + 5

3 1
oxy —y1 + 55@'% — (bo + 2)z1y1 + bgy% + 553&{’

1
- <§bo + 1> z3y1 + bow1yi + bays )

3 1
x1 + 0y1 + ix% + b5y% + 530:1)’ + b5x1y% + bggﬁ

3. Center Conditions and Hopf
Bifurcation

In this section, we consider the center conditions
and bifurcation of limit cycles for the switching
cubic system (2]). Because the qualitative properties
around (—1,0) are the same as that around (1,0)
in the system (), hence we only need to consider
the center conditions and Hopf bifurcation at the
singular point (1,0).

In order to study the center conditions and limit
cycles bifurcation around the Hopf critical point
(1,0), we need to compute its Lyapunov constants
associated with the Hopf critical point. To achieve
this, we introduce the following transformation,

1
Y=Y, t_>_ta

r=x+ 1, 5

into system () to obtain

if y1 >0,

if yp < 0.

|
Theorem 3. For system (27), the first four Lya-
punov constants at the origin are given by

1
Vo= —5(*™ — 1),
e
4
Wi = g(% — bs),

Vo = —g[(@ +b2)(1 + b — 2b5) — 3(ag + be)],

4
Vs = E (2 + by — 2b5)[4b2(a2 + b2) — 3(@3 — bg)]

— 4(()2 + 356)(612 + bg)}
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For higher Lyapunov constants, there are several cases listed below.

(I) If 24 by — 2b5 # 0, then

(a2 + bo)m 2
Vy=-— 24 by — 2b5)“|6bo (3 + bg + 3b 5b b 3006
4 288(2—|—b0—2b5){( + by — 2b5)7[6b(3 + bo + 3b5) + Bba(az + b2) + 3003]
—5(2 + by — 2b5)(ag — 5by)(ba + 3bg) — 30(by + 3b6)°},
32(a2 + b
V5 = —%{(2 + bo - 2[)5)[9(&2 + bz)b% - 18b0(b2b5 + a2b5 - 2b2 + 3b6 + CL2)

+ 10by (CLQ + b2)2] — 10(@2 + b2)2(b2 + 3b6)}

(In) Further, if 5(as + b2)? + 9bo(2 + by — 2b5) # 0, then

_ bolaz +b2)(2 — bo + 2b5)(2 + bp — 2b5)7
- 92160[5(@2 + b2)2 + 9b0(2 + bo - 2b5)]2

__ bolag +by)(=2+bo — 2b5)(2+ bo — 2b5) .
T 1219276800[5(ay + b2)? + 9bo(2 + by — 2b5)7

6 Fr,

(I) or if 5(ag 4 ba)? + 9bo(2 + by — 2b5) = 0, then

32
- _ 2 2 3 2
5 25515b0 [(GQ bg)(a +b ) ][5(0,2 =+ bg) =+ 36()0],
s
Vo= ———[15309(by + 3bg)*b2 + 135b2(443b2 + 378bobg — 170102)b2
6 93312Obob2[ (b2 + 3bg)“by + 5( 5+ 206 6)b0
4 600035 (289by — 567bg )by — 1400063],
1
Ve = 32768bo (2003 + 9bgbs + 27bobg)[567(by + 3bg )2b2
7 411505920013352{ 0(20b; + 9boba + 27bobe) [567(b2 + 3b6)"bo

— 40b3(89by — 189bg )by + 560b5] — 7357 (40b3 + 27bg)[15309(by + 3bg)*b]
+ 135b3 (443b% + 378bgbg — 1701b2)b3 + 60063 (289by — 567bg )by — 1400005] }.

(II) If 2+ by — 2b5 = 0, then

16 o
Vs = _E(QQ +b2) (b2 +3bs), Vi= 6—4(—a3 +b3)(ba + 3bg), V5 =Vs=V7=0.

In the above expressions of V3’s, we have set Vo = Vi = Vo = --- = V;_1 = 0 in computing V}, for
k=1,2,3,...,7. Here,

Fy = 8[12bg + 35(ag + b2)?][90(2 + by — 2bs) + 5(as + ba)?]? + 15120(ag — b2)?[9bo(2 + by — 2b5)
+5(ag + b2)?] — 315(ay — by)?{24[5(az + by)? — 36bs + 36]by + 5[5(ag + bo)* + 48](as + by)?}
and

Fy = [5(ag + ba)? + 9bo(2 + bo — 2b5)]{[5(az + b2)? + 9bo(2 + bo — 2b5){[5(az + b2)® + 9bo(2 + by — 2b5)]
X [524288(by — ag)(12bg + 35(ag + bo)?) + (381024063 + 317520(35(ag + by)? — 24bs + 6)by
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+ 5556600(&2 + b2)2(1 — 4b5))] — 3932160(@2 — bg)[76(a2 + b2)2b0 + 252(&2 — b2)2 + 7(@2 + b2)4]

+ 333396007 (ag — b2)?[18bg — 5(ag + bo)? — 27]} 4 1890(ag — ba)?{262144(as — bo)[5(az + by)?

— 36b5 + 36] — 66157[25(az + ba)* + 60(ag + bg)? + 1296b5 — 1296]}bg + 1575(ag — be)*(ag + ba)?
x {65536(az — bo)[5(ag + ba)? + 96] + 66157[5(ag + ba)?(12b5 + 13) + 432]}}
+ 34406400(ag + by)?(ag — bo)3{72[5(ag + by)? + 36bs — 36]bg + 5(ay + by)?[5(ag + by)? — 144]}.

Now, we turn to discuss the center conditions of
system (21)). From Theorem [3l we have the following
result.

Theorem 4. System (27) has a center at the ori-
gin if and only if § = 0 and one of the following
conditions is satisfied:

(I)a5—b5:2—b0+2b5:ag—agzag—
b3=b(2)+2b3=bg—()6=o,

(H) as — bs = ag + bg = az — bg = as + by = 0,

(III)a5—b5=2+bo—2()5=bg+3()6=a2+
3@620.

Proof. To prove that we have obtained a com-
plete classification on the center conditions, we first
prove the necessity of the conditions in Theorem @l
Assume that system (27) has a center at the ori-
gin, then all the Lyapunov constants should vanish.
From Theorem B, Vy = 0 yields 6 = 0. Then, we
use as and ag to linearly solve V3 = 0 and V = O,I

respectively. In the case 2 + by — 2bs # 0, we
use az to linearly solve V3 = 0. Then, if we use
the condition a9 + by = 0 to solve V4 = 0 and
Vs = 0, we have the center condition (II). Other-
wise, we linearly solve V4 = 0 using b3. Further,
suppose that 5(ag + b2)? + 9b(2 + by — 2b5) # 0,
we solve V5 = 0 using bg. Next, if we use the condi-
tion 2 — by + 2b5 = 0 to solve V5 = 0 and V7 = 0,
then we get the center condition (I). Otherwise, we
cannot get center conditions, and this case will be
discussed in the next subsection. However, if we
assume 5(ag + bo)? + 9bo(2 + by — 2b5) = 0, by a
direct computation, we find that all the Lyapunov
constants cannot vanish. In the case 2 + by —
2b; = 0, by solving V3 = 0, we obtain two con-
ditions as + bo = 0 and by + 3bg = 0, which yield
the center conditions (II) and (III), respectively.

Next, we prove the sufficiency of the conditions.

When condition (I) holds with 6 = 0, sys-
tem (27) becomes

dx 1 1
d—tl = —y1 — (bo + 2)m1y1 + azyi — <§bo + 1> T3y + asz1yl — §b3yi’,
p ; (y1 > 0);
Y1 1 1 1
= mt gt <§bo - 1> yi+ gl <§bo - 1> z1y7 + agyy,
(28)
dx 1 1
d—tl = —y1 — (bo + 2)z1y1 + bayi — (550 + 1> wtyr + baxryt — 55321“;’,
p . (y1 <0).
Y1 1 1 1
=t 535% + (51)0 - 1> Y+ §xi” + <§b0 - 1> z1y7 + bayt,
The upper and lower systems respectively have the analytic first integrals,
H(x )—lln[(x + 1) + boy3] — !
1 1 yl 4 1 Oyl 2b0[($1 + 1)2 + boy%]
az(z1 +1) 2 91, —1__ boyr [ 2 bo] }
X ——[(x1+1)°+D tanT —————+ |(x1 +1)" —a r1+1)— —
{\/@xﬁrl\[( 1+ 1) o Vbolz1 + 1] (e +1) e +1) 2
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and
Ha(21,91) = ~ Inf(e1 + 1) + boy?] — 1
2\T1, Y1) = 4 1 0Y1 2b0[($1+1)2+b0y%]
bQ(xl + 1) 2 2 -1 bOyl |: 9 b():| }
T 4 1 b t - 12 — b 1) — 29 7
X{\/%\x1+1\[(xl+ )° + boy7] tan NS + [(x1+ 1) oy1(z1 + 1) :

showing that H;(x1,0) = Ha(z1,0). By Lemma[3] the origin of system (27)) is a center.
When the condition (II) holds with § = 0, system (27]) is reduced to

dx 1
d—tl = —y1 — (bo + 2)z1y1 — boyi — (550 + 1) ziyr = bar1yi + bay,
d 3 1 (y1 > 0);

Y1
P! + 555% + bsyi + 556? + b5yl — beyl,

(29)

dz, B 9 1 2 2 3
T (bo + 2)@1y1 + bayi — 550 + 1) 21y + baaryy + bsyy,
) ; 1 (yl < 0)’
% =z + 535% + bsyi + 535:% +bsw1yi + beys,

showing that the system is symmetric with the zj-axis, and thus by Lemma [, the origin of system ([27]) is
a center.
When the condition (III) is satisfied with 6 = 0, system (Z7]) becomes

dz 1

d—tl = —y1 — (bo + 2)a1y1 — acyi — (550 + 1> wiy1 — agr1y + asyy,

) ; (y1 > 0);
" 1 1 1

— =+ 5.1% + (51)0 + 1) yi + 536? + (550 + 1) 21y} + agyi,

(30)

dxy o b 9 b2 1b 1 2 3b 2 4 byy?

T (bo + 2)x1y1 — 3beyi — 500 T L) @iy = obeT1y1 + b3y,

) ) 1 1 ) (y1 <0).
Y1

—r =@t s+ (51)0 + 1) ui+ gad + (550 + 1) z1yi + beyi,

The upper and lower systems have analytic first integrals,

1 b 1 1 1 1
Hyi(21,91) = —5(%‘% +y7) — (1 + §O> <1 + §x1> 21yt — agy’(z1 + 1) — 536? (1 + 1361) + Za:ayil

and

1 b 1 1 1 1
Hos(x1,11) = —5(95% +y7) — (1 + §0> <1 + 5561) a1yt — beyi (z1 + 1) — 556“;’ (1 + Zﬂfl) + Zb3yil,

respectively, indicating that Hqq(z1,0) = Haa(21,0). By Lemma 3 the origin of system (27)) is a center.
The proof is completed. W
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3.2. Bifurcation of limit cycles in
system (2)

In this section, we study the bifurcation of limit
cycles in system (2]). Consider the limit cycles bifur-
cating from the origin (0,0), (1,0) or (—1,0). The
following result directly follows Theorem [3

Theorem 5. System (@) can have eight limit cycles
with the TUL distribution around the singular points
(1,0) U (0,0) or (—1,0) U (0,0).

Proof. For system (21, as discussed in the proof
of Theorem [B, we set § = 0 to get Vy = 0. From
the second Lyapunov constant Vi in Theorem [3]
we solve V7 = 0 to obtain as = bs. Then, solving
V2 =0 yields ag — %[(a2+b2)(1+b0 —2b5) —3b6]. In
order to obtain maximal number of small-amplitude
limit cycles bifurcating from the origin of [27), we
assume that

(a3 — b3)[(bo — 2b5)* — 4](3by — 6b5 + 10)
x [5(ag + ba)? + 9bo(2 + by — 2b5)]
X [9bo(2 + by — 2bs) + 20b3] # 0.

Fgl = rem(FQ,Fl,b5) =

17203200(ag + b2)?(az — b2)3[5(ag + b2)? + 36bo]

Then, we solve
Va=Vy=V5=0

to obtain
1

3(2 4 by — 2bs)
X [4b2(a2 + bg) + 3()3] — 4(bg + 3b6)(a2 + bg)},
1

az = {(2+bo—2b5)

by = 5(2 + b — 2b — 5b
B B0 1 by~ a2 02 Tt 2hs)(a = 5h)
x (bg + 3bg) + 30(bg + 3bg)* — (2 + by — 2b5)?
X [6[)0(3 + b() + 3b5) + 552(0,2 + bg)]},
1
be =

~ 6[5(az + b2)? + 9o (2 + by — 2b3)]
X {(2 + by — 255)[9(612 + bg)b%
— 18b0(b2b5 + asbs — 2by + CL2)

+ 10()2(@2 + b2)2] — 10(@2 + b2)2b2}.

To simplify the expressions of Vg and V7, with the
aid of Maple built-in command “rem” we obtain
the remainder equation,

Fyiq,

where
Foia = 35(ag + b2)* — 24(ag + b2)?bo + 9072b2.

It is easy to verify that Fb;, = 0 has no real solu-
tions, which implies that we can obtain at most

qot [20VA Vo, Vi, Vi, Vs, Vi)

35(0,2 + 52)2 + 12bg

(bo — 205 + 2)%bo(az + bo)7®

seven small-amplitude limit cycles around the origin
of 7).

With the results obtained above, a direct cal-
culation shows that the determinant evaluated at
the critical values is given by

8(0/5, ag, as, b37 b67 b5)

~122472000[5(az + b2)? + 9bo(2 + by — 2b3)]

2Fdet7

where Fye; can be found in the supplement posted on the journal website. Then, we obtain

resultant (F, Fiet, az) = 1.148297576383067622751168118784 x 10°°(by — 2b5 + 2)%(by — 2b5 — 2)1°

x b® (3bg — 6bs + 10)1(35b3 4 3bo)2[9bo (2 + by — 2bs) + 20b3]* # 0,

implying, by Theorem ] that system (21]) can indeed have seven small-amplitude limit cycles bifurcating
from the center-type singular point (the origin). Thus, in system (), seven limit cycles can exist around

the singular point (1, 0).

Moreover, under the above conditions we prove that there is one limit cycle bifurcating from the origin

of system (). To show this, with the transformation,

T = \/%:BQa

Yy =1Y2, t_>—t7
Vo
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when ¢ = 0, system (2)) is transformed to the following form,

It can be shown that the first Lyapunov constant
evaluated at the origin of (BI) is given by

_ (CLQ + 3&6 + bg + 3b6)7T
4y/by '

It is easy to verify that if system (Z) has seven limit
cycles around (1,0), then

Uy =

(b() — 2b5 + 2)(0,2 + b2)7T
4v/bo

implying that system (2)) can have one limit cycle
around the origin (0,0). Hence, system (2)) can have
at least eight limit cycles with the 7 U 1 distribu-
tion around the singular points (1,0) U (0,0). In
the same way, system () can have at least eightI

U1:— #07

dx

—2 = —yo + (bo + 2)adys —

dt

d

% = 29 — box§ — 2a572y3 —

dx

=2 = —yy + (bo + 2)adys —

dt

dyz 3 2

2 gy — boad — 2b -
\ dt €2 0Lo 5L2Y9

—x —_—— s
NS 2Y2 bo Ya

(y2 > 0);
2@6

<%0 3
\/%y%

—=T2Y5 — —— Y,
b Y2 b Y2

Nt

|
limit cycles with the 7 U 1 distribution around

the singular points (—1,0) U (0,0). W

(31)

(y2 < 0).

4. Bifurcation of Limit Cycles by
Perturbation

In this section, we want to obtain small-amplitude
limit cycles around the center (1,0) or (—1,0) by
perturbing the system (@2)). In view of the fact that
system (2) has more free parameters under center
condition (II) than that under the center condi-
tion (I) or (IIT), we may use the center condition
(IT) to generate more limit cycles. Thus, we add
cubic homogeneous perturbations to system (2]
under center condition (II) to obtain the following
perturbed system:

% = boya — (bo + 2)x3ys — 2b2x0y3 + 2b3ys

— €[0(23 — w2) + psy2 + pr(23 — x2) + pradys + pazays + psy3), (y2 > 0);
dd% = —x3 + 23 + 2bs22y35 — 2b6Y5

— €[20y2 + proye + po(23 — w2) + pazdys + psTays + Peys);

(32)

% = boy2 — (bo + 2)x3y2 + 2baw2y3 + 2b3y5

— W0 —w2) sy - ar(of — o) - anshue + e+ o,
dd% = —y + 23 + 2b522y3 + 2bsy

— €[20y2 + qroya + 4o (23 — x2) + Qa3Ya + 45723 + 46Y3),

where ¢, p;’s and ¢;’s are real parameters, satisfying |§] < 1 and 0 < e < 1.
In order for system (B2) to have Hopf singular points at (1,0), we set pigp = —p4 — 2p7, q10 = —qa — 247.
By a direct computation, we can show that a further simplification in computation can be made by setting

pr=p9 =qr=qy9 =0, pg = —p1, @8 = —q1 and by = 1.
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Theorem 6. The perturbed system (34) can have
at least ten small-amplitude limit cycles around the
singular points (1,0) or (—1,0).

Proof. Based on the form of ([B2), we say that the
qualitative properties around (—1,0) are the same
with that around (1,0) in system (B2). Hence we

only need to consider the Hopf bifurcation at theI

singular point (1,0). We need to compute its Lya-
punov constants to study the limit cycles bifurcat-
ing from the Hopf critical point (1,0). Now, we give
the following transformation,

$2:1—X7 y2:Ya t_>_§t7
into system (B2)), so the singular point (1,0) of (32))
becomes the origin of the following system,

dX 3 1 1
—— =X Y — Sed X2 4 (ep1 +3)XY — by 4 epo | Y2 + Ze0X?
dt 2 2 2
3 1 1 1
— (5 + 5epl) X%y + <b2 + 56}92) Xv? 4+ (b3 — 5epg> Y3,
ay 3 1 1 1 &> 0)
— =X +eY — X% —epg XY — (b5 — = Y24 X 4 ceps XY
0t te 5 €p4 < 5 26105) T AT T e
1 2 1 3
+ 55—56175 XY~ + 56+§€p6 Y,
(33)
dX 3 1 1
—— =X Y — ZedX? 4 (equ +3)XY + by — —eq | Y2 + Ze0 X3
dt 2 2 2
3 1 1 1
—(=4+= X%y — - Xy? - Y3
(2 + 26611) <b2 26612> + (b3 26613> ;
dy 3 1 1 1 =0
= _Z2x2 _ _ _x 2, ty3 , * 2
7 X +edY 2X euXY <b5 26(]5) Y+ 2X + 2eq4X Y
1 2 1 3
+ b5 — —€Q5 XY“* — b6 — <€gp Y~
2 2
If we want to prove the existence of ten small- .
amplitude limit cycles, we need to find the e-order 18 simplified to
Lyapunov constants eVy;, ¢ = 0,1,2,.... First, we 7T
’ it ’ =—2 —-1)—-2 —2].
have Vg = 276, thus letting 6 = 0 yields Vig = 0. Viz 16[ b5 (P2 ) =22+ 3ps =2
A direct computation in higher Lyapunov constants  Letting
shows that we may set the nonused parameters 9
q1=q2 =q3 = qs = g5 = g6 = 0, and choose py as pe = —5lbs(p2 = 1) —p2 — 1],
a free parameter, and so, without of loss of gener-
we have Vi9 = 0. To obtain maximal number of

ality, let p4 = 1. Then, we obtain V1 = %(pl + ps).
Setting Vi1 = 0 results in p; = —p1, and then V12|

small-amplitude limit cycles bifurcating from the
origin of system (B3]), we first assume that

Fy = (2b5 — 3)(by — bg)[5b5 (b2 — 15bg) — 8by — 69bg][(10b3 + 30babg + 60bz + 21)bs — 12b3 — (20b3 — 20)b?
—10b3 — 15bgbg + 45b% — 45b3 — 36]{4(by + bg)b2 + 4[(bs — 3)by + 3b3bg]b? — [2b3(by + 6bg)
+ 3(6b2 + 4bs — 3)by + 9(4b3 + 3)bg|bs + 2b5 + 93bg + Ibobs — 27bg(bg — bz — 1)} # 0.

Then, we have
2

Vig = —
13 45

[3p1 (405 — 9) + 2b2(4bsp2 + 2b5 + 1) + 4pa(3bs — 2b2) + 3p3(3 — 2b3)),
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™
Via = —————{(3 — 2b5)?[3p1 (b — 2b6) — p2(3bs + 5bs +4) — 2b3 — 3
14 96(3—2b5){( 5)°[3p1(b2 — 2bg) — p2(3bs + 5bs + 4) — 2b3 — 3]
+ (3 — 2b5)[3p1 (b2 + 3b6) + 4b3b5 + 15] + 5[2b2(b5 — 1) + 3b6][p2(b2 + 3b6) + 2b2]},
Vis = o2 F
97 1575[(10b2 + 30bybg + 60bs + 21)bs — 1263 — (20b3 — 20)b2 — 10b2 — 15bybg + 4562 — 45b3 — 36]
™
Vig = —————{[105by (by — bg) — bg(5bs — 8) — bs(14 — 5bs) — 15](by — b
16 1152(b2—b6){[ 2(b2 — bg) — b3(5bs — 8) — bs( 5) — 15)(b2 — bs)
+ b6 (10b5 + 11)(5bs + Tbs + 6)},
(34)
where

1
Fi5 = —15by(3 — 2b5)* + 78— 2b5)3[45p1 (b3 — b2) + 10b3(13by — 3bg) + 326bs]

1
+508- 2b5)2[45p1 (bs — ba) (b + 3bg) (3 + 2b3) + 6bs (6062 + 3003 + 55b3 + 2)

— 2by (90[):2)) - 20[)3 + 425b3 + 448)] + 5(52 + 3b6){9p1 (bg — b@)(bg + 3b6)[2b2 (b5 — 1) + 3b6]
— 18b2(1 + 3b3) — 6babg (6bsbs — 15b3 — 10bs — 13) + 4b3(9bsbs — 9bs + 31bs — 32)}.

Now, we linearly solve the polynomial equations in ([34]) one by one, i.e. using p3 to solve for Vi3 = 0,
po for V14 = 0, py for V15 = 0, and b3 for Vig = 0. Then, higher Lyapunov constants are obtained as follows:

647
‘/17 = - ;
33075[5b5 (by — 15bg) — 8by — 69bg]
Vie — Fig
18 T 20321280[5bs (by — 15bg) — 8by — 69b]2(by — bg)’
Vie — Fig
M T 6706022400[5bs (by — 15bg) — 8by — 69662 (bs — b)
Vi — Fiio
10 804722688000[5b5 (by — 15bg) — 8by — 69bg]3 (bs — b))’
where
Fi7 = (by — bg)*(1820003 — 8400bybg 4 161002 — 2671b5 — 4112)
— bg[(b2 — bg)(980b% + 6220b5 + 4993) — 28bg (205 + 5)(10b5 + 11)]
and

Fig = 132371{(ba — bg)3[2100(547 4 14305 )bs — 126000 (3685b5 4 4058)b3 + 6(44275b3 + 346500005 b
+ 30445b2 + 418005062 — 276886bs — 281212)b3 — 3b6(1382150b3 — 93975b2 — 4960304b5
— 3421092)by + 213 (112200b3 + 657205b7 + 9793565 + 428678) + 4(10b3 — 17bs — 23)
x (119002 — 1864b5 — 3385)] — bg(10bs + 11)[3(by — bg)*(3920b3 + 20062 — 21480b5 — 15676
— TbE (506002 + 39640b5 + 28523)) + 28bg (1005 + 11)(3(bg — be)(154b5b7 — 12b7 + 385b3 — 26bs — 2)
— 2b6(10b5 4 11)(2b5 + 1))]} + [33868800(3 — 4b5)](ba — bg)(5babs — T5bsbg — 8by — 69b)*Vi7,
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while Fig, Fi19 are lengthy polynomials in bs, bs,
and bg, which are omitted here. Therefore, the best
choice for obtaining maximal number of limit cycles
is to find the solutions of by, bs and bg such that
F17 = F18 = F19 = 07 but FOF110 75 O, which results
in at most ten small-amplitude limit cycles from the
origin of system (B3)).
To find the solutions of

Fi7 = Fig = Fig = 0,

we use the Maple built-in command “rem” to
simplify their expressions, yielding

Fg7 = rem(Fig, F17,bs5)

_ 27 r
"~ 2(23b2 — 60bobg + 4562)3 0

where Fg7, is a polynomial in bs, b5, and bg, and
linear about b5, which are omitted here. According
to the Remainder Theorem, Fi7; = Fig = Fijg =0
is equivalent to Fi7 = Fg7, = Fi9 = 0. Solving b5
from Fg7, = 0, we obtain

bsn
bs = ——,
° bsp

where

bsy = 21994532000005° — 8896444508000b52bg + (129149862030000b2 — 87591250880)b4

— (868029379700000b3 — 1256284883035b6 )bs” + (3345344687930000b¢ — 20459719846720b2

— 4738906168)b5 — (8240034473160000bg — 152899275172525b3 — 52030218888bg )b

+ (1370586166210800068 — 569208248434280b¢ — 386091386944b2)b% — (15773635626840000b

— 1232657035887270b¢ + 332372718720b3)b5 + (12584085919020000b5 — 168541012240020052

+ 1338540376464b3)b5 — (6819306788700000b3 — 1498485253403250b% — 2940407318736b3)b3

+ (23850107977500006° — 851949290215800b8 — 688081417920068)b5 — (481965592500000b 4!

— 286231305920175b7 — 2809982715840b%)b3 + (42195431250000b4% — 45645686919000b°

+ 525511658088b5 )b + 1231503800625 — 3822289884007,

bsp = 1160374359375b3! — 45292107065625b2 by + (292356046355625b3 — 40040179200)bg

— (890092355016375b3 — 579318143040)by b + (1579654918311750b3 + 2573300866176)b3bs

— (1763064584779050b3 + 6327075037824)b3b% + (1261988966671650b3 + 1987439043456)b3ba

— (566375602962750b3 — 2395459177728)b5bg + (147025015679675b3 — 1009058988160)bSb3

— (17634219652525b3 + 129869074304)b1b3 + (245426884325b3 — 9098488192)b5bs

+ (28121213925b3 + 1653808320)b5.

Substituting the solution b5 into Fj7 and Fig yields that

_ 392(bs — b)3(23b3 — 60babg + 45b3)3

Fi7
bp
— 4103 + 1986b2bs — 153b3) Fi7a,
4(by — bg)?
Fig=— ( 2b5 6)
5D
where

(175b3 — 5425b3bg + 44625b3b2 — 39375bo b3

(175b3 — 5425b3bg + 44625b3b% — 39375bab — 413 + 1986bobs — 153b2)% Flga,

Fi7, = 533223958400000b3! — 569455646592000005 b6 + (27046925281824000b2 + 36789698802325)b3

— (754278239657600006% + 2374585297969851)6)()% + (137216389322040000()é1
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+ 893695625654020b7 + 495943470320)b — (17087350126644000063 + 2231123598503940b%

— 1333793971504b6 )bS + (1484539526156400006¢ + 3487761622866150b¢ — 3671375629776b2)b5

— (89807523085224000b; + 3295601120874510b + 4948448461200b%)b5 + (3696864546564000008

+1821076083790740b8 + 12526786532304b¢ )b — (9824496658200000b7 + 543391572597300b%

+ 4836273089904b3)b3 + (15100338330000006.° + 67909069990125b5 — 89409725208068) by

— 101269035000000b4! 4 342720669375b3 4 400141101600

and Flg, is a polynomial in by and bg, which are omitted here. Now, we need to find solutions of by and bg
such that Fi7, = Floq = 0, but FybspFi19 # 0. Again, we use the Maple command “rem” and “resultant”

to obtain rem(Floq, Fi74,b6) = Fo7, and then

Fi7497 = resultant(Fi7q, For, be)

= Cb2%°(5363005186360815000000000064° + 5264245855401885313684240000b5

+ 54445116831821152154833710005 — 3877657570922662731034902961)3l

— 255257807648772965284666341b3 — 32345418979891744705150434)

x (74198600363886375097656250000000005° + 104736494519761723876660156250000064

+ 541377423879749549575886962890625b32 4 124762729270469072104017978515625b1°

+ 13054805934302191749817586484375b5 + 73154181616660896781582468125005

+ 1691473722358136282248143()3751)3l + 9078812025969674245082805b3

4 2479608114583719233097)8 (61560190237336544621976396091015625000051°

— 731907810934317520907061383859175170625b5

— 46873728983004537705588603865080885255005

— 16937175919452904610229612666535720785b3

— 353690927917112505903442270661328588b3

— 47839883903858245269575882615966208)1°,

where C' is a constant. Finally, we solve Fi7497 =0
to find the solutions of by. It can be shown that this
polynomial has five real roots, which in turn yield
five corresponding solutions for bs. By checking that
Fi74 = Floq = 0 and Fybsp F1109 # 0, we found that
only two of them satisfy the original equations. We
take one of the solutions:

by = —0.6499316542. . . ,
b = —1.4007939402. .. .

Then, the other perturbation parameters are equal
to

ps = —0.6593001227 . . .,
pe = —0.3425204361 . . . ,

p3 = —0.7686180478 . . . ,
po = 0.1486175491 . . . ,
p1 = 0.6593001227 .. . ,
bs = 0.6172899175. . . ,
bs = —1.9525868799. .. .

The above critical values can be used to define
a critical point, called p., for which the e-order

Lyapunov constants become
Vii=0, i=1,2,...,9,

Vi1 = 0.0157763313 - - - # 0.
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Moreover, a direct calculation shows that

o0(Vi7, Vis, V3
dt[ (Viz, Vis, Vig)

= 0.0003020524 - - -
6(b2a b57 b6) :l

#0,

implying, by Theorem [ that system (B3)) can
indeed have ten small-amplitude limit cycles bifur-
cating from the center-type singular point (the ori-
gin). Thus, system (32) can have ten limit cycles
around (1,0) or (—1,0).

Finally, we check if we can have limit cycles
bifurcating from the origin of system ([B82). A simple
direct computation shows that the zero-order Lya-
punov constant of system ([B2) at the origin is equal
to

1 1 1
Voo = 5(6(5 —€)m + 5(65)7T = 5(25 — 1)me

1
R —gme for § = o(e),

which implies that the origin of system (B2]) is a sta-
ble focus (¢ > 0), and so no more small-amplitude
limit cycles can bifurcate from the origin of sys-
tem (32).

If we do not assume p; = pg = q7 = q9 = 0,
Ps = —p1,qs = —q1, pa = 1l and ¢;, 1 = 1,2,3,4,5,6
are nonzero, then the zero-order Lyapunov constant
of system (B2)) at the origin becomes

1

1
Voo = —§€(p7 — pio — 0)m — §E(Q7 —qio — )

1
= 5(25 — p7 — q7 + P10 + quo)TeE

1
= 5(25 — pa — q4 — 3p7 — 3q7)TE,
where pio = —ps — 2p7 and qi0 = —q@ — 2q7

have been used. Thus, when 6 = 0, we may set
P4+ qa + 3p7 + 3q7 = 0 to get Vpp = 0 for which
we may apply proper perturbations to obtain more
limit cycles bifurcating from the origin. However, in
this case, it can be shown that py + q4 + 3p7 + 3¢7
is a common factor in the last four Lyapunov con-
stants focus: Vi7, Vig, Vig and Vi19. This indicates
that when ten small-amplitude limit cycles exist
around the singular point of (1,0) of system (32),
it is not possible to have more limit cycles bifurcat-
ing from the origin. In the same way, we know that
when ten small-amplitude limit cycles exist around
the singular point of (—1,0) of system B2)), it is

also not possible to have more limit cycles bifurcat-
ing from the origin.
The proof of Theorem [f is complete. H

5. Conclusion

In this paper, we have considered a class of pla-
nar switching differential systems with cubic homo-
geneous nonlinearities, and gave a new version of
Gasull-Torregrosa method for computing the Lya-
punov constants of the planar switching systems.
We obtained the center conditions and proved the
existence of eight limit cycles for a class of cubic
switching systems using this method with the aid
of Maple. Moreover, we used one of the center con-
ditions to construct a special integrable system and
then perturbed this system to obtain ten small-
amplitude limit cycles around the singular point
either (1,0) or (—1,0), which is a new lower bound
on the maximal number of small-amplitude limit
cycles obtained around one singular point in such
cubic switching systems with cubic homogeneous
nonlinearities.
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